PRODUCTION OF DESIGNER EGG THROUGH DIETARY MANIPULATION AND ITS IMPORTANCE : A REVIEW

*¹SATAPATHY, DEBASISH; ²KUMARI, TRIPTI; ¹SHARMA, AMIT AND ³BIDANTA, SATYASWORUP

DEPARTMENT OF AGRICULTURAL ECONOMICS NATIONAL DAIRY RESEARCH INSTITUTE KARNAL – 132 001, HARYANA, INDIA

EMAIL: debasish.232431@gmail.com

ABSTRACT

In recent time, poultry sector is at boom. But along with quantity of egg production, we have to look towards the quality of egg. Now a day, consumers are more health conscious. So they prefer low cholesterol egg. Therefore, producers should give importance for the production of designer eggs, which are enriched with specific nutrients like omega-3 fatty acid, Selenium, iodine, chromium, etc. Also some of the antioxidants can be added to the diet to increase their amount in eggs. So that consumers will be able to prevent themselves from several diseases. Apart from that, some of the herbal products can also be added in the diet of the laying hen to increase nutrient concentration in eggs.

KEY WORDS: Chromium, Designer, Egg, Iodine, Omega-3 fatty acid, Selenium

INTRODUCTION

Among all sectors of veterinary science, poultry industry is one of the fastest growing industries. As per the data of 2012 from FAO, India stands at 3rd position in world in case of egg production. Egg production at the end of the Tenth Plan (2006-07) was 50.70 billion as compared to 66.45 billion at the end of the Eleventh Plan (2011-12). Currently the total poultry population in our country is 729.21 million (as per 19th Livestock Census) and egg productionis around 82.93 billion during 2015-16. The per capita availability (2015-16) is around 66 eggs per annum (Anonymous, 2016-17). Over the last decade, there has been interest in altering the 'composition' of poultry products.

Generally, such compositional changes are related to either the quantity of certain nutrients components of poultry egg or its nutritional profile as it relates to human health or consumer demand (Wong, 2007). However, in recent times, decreases in egg consumption have been observed. decline is attributable to consumer concerns about cholesterol, fat sources, types of fatty acids consumed, and their relationship to coronary heart disease (CHD). American Heart Association suggests limiting whole egg or egg yolk consumption to three or four per week, including those used in cooking. As poultry meat and eggs are lacking in many minerals and vitamins, fortification with these nutrients can be considered, if it is economically achievable

ISSN: 2277-9663

¹Ph. D. Student, Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana

²Ph. D. Student, Livestock Production and Management Division, National Dairy Research Institute, Karnal, Haryana

³PG Student, Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana

through dietary manipulation. Besides branding, several local egg producers have marketed designer eggs which include enriched ω-3 eggs, selenium, folate, vitamin E and lower cholesterol eggs. The value addition to eggs can either be done prior to oviposition or after oviposition (Ezhilvalavan etal., 2003). Designer or enriched eggs are examples of preoviposition value added products. Therefore, several attempts have been made to reverse the decline in egg consumption by changing egg composition through genetic selection or alteration of the laying hen's diet with various nutrients, natural products, nonnutritive factors, or pharmacological agents.

Modified or Enriched egg

Modified or enriched eggs or super eggs are those in which the content has been modified from the standard eggs due to change in the diet of the laying hen. These eggs may be classified as nutritionally enhanced eggs, value added eggs, processed eggs. Etc. A lot of studies have shown that feeding animals with different components has a strong effect on the composition of food. Conjugated linoleic acid has been used in many of these studies (Kim et al., 2016). However, modified fat content of the eggs are marketed as a reduced amount of cholesterol, less saturated fat, elevated amount of omega-a fatty acid, higher vitamin content and high amount of iodine. However, the organic and free-range eggs are marketed as value added eggs. The nutritional content of the organic eggs will be equal to the generic eggs if the feed is of similar quality.

Strategies to consider in egg nutrient enrichment

Some strategies should be adopted for efficient designer egg production (Dominic *et al.*, 2014) such as:

- > Efficient nutrient conversion efficiency
- > There may be toxicity while feeding some nutrients at high level (eg: Vitamin

A and D are toxic at high doses). Therefore, care should be taken during feeding of these nutrients.

ISSN: 2277-9663

- ➤ Nutrient should be fed to bird keeping the market demand in view
- Designer egg should be prepared according to recommended dietary allowance for human
- Negative nutrient interactions should be avoided
- ➤ While preparing the designer egg with spefic nutrient, taste of the product should be take care
- ➤ Some measures should be taken so that nutrients will not be lost while cooking.

Herbal designer egg

In India, Narahari et al. (2004) has build up Herbal Enriched Designer Eggs (HEDE) which was not only rich in n-3 PUFA but also had vit-E, Se, carotenoids, certain B-complex vitamins and trace minerals. These eggs were also rich in several herbal active principles like allicin, eugenol, lumiflavin, betaine, sulforaphane, taurine and a lot of more active principles depending on herb fed to health-promoting Examples of components include garlic, fenugreek and bay leaves. Garlic (Allium sativum) has hypolipidemic, hypotensive, potential hypoglycemic, hypothrombotic, hypoatherogenic and galactogenic properties (Bordia et al., 1975, Sklan et al., 1992, Chowdhury et al., 2002). Fenugreek seeds (Trigonella foenum) have hypoglycemic, hyperinsulinemic hypolipidemic and (Sowmya Rajyalakshmi, 1999) and properties and also have a unique property to reduce platelet aggregation (Hannan et al., 2003). Alkaloids from bay leaves have antioxidative properties (Tachibana et al., 2003). Chowdhury et al. (2002) also observed cholesterol reduction properties ofdietary garlic in laying hens.

www.arkgroup.co.in Page 627

Omega-3 fatty acid enriched eggs

Dyerberg and Bang (1979) reported that omega-3 fatty acids would protect the heart from Cardiovascular Diseases (CVD). Advantages of omega-3 fatty acid enriched eggs are:

- a)Prevention of coronary heart diseaseb)Infant development, reduction of cancer and inflammatory disease
- c)Prevention of psychiatric disorders
- d)Helpful in improvement of oxygen supply to the tissues
- e)Increase in brain function
- f)Give relief in treatment of Rheumatoid arthritis
- g)Improves skin and relieves arthritis
- h)Helpful in curing from inflammatory

disorders and improve immune responses

Recently, eggs have gained attention as an alternative to fish and oilseeds as a source of Omega -3 fatty acids. Generally, people tend to avoid egg yolk, but yolk only contains omega 3 fatty acids. The total fat content in the egg yolk cannot be altered; but its fatty acid composition can be altered, by changing the type of oil used in the hen's diet. Omega-3 is an essential fatty acid with a treasure trove of health benefits. Feeding of some oil cakes like flax seed (Linseed), marine algae, fish oil and rapeseed oil will lead to increase in omega-3 fatty acid content of egg (Abubakar et al., 2007). Conentent of omega-3 fatty acid in egg can be increased primarily by feeding linoleic acid, which is a precursor for DHA. Linoleic acid protects the consumer from heart diseases (Hu et al., 1999). One normal eggs contain only 50-100 mg of omega 3 fatty acids and which can be increased to 500 mg or more with dietary modifications in the hen's diet by feeding flaxseed (linseed) or marine algae or fish oil or rape seed oil (Dominic et al., 2014).

Low cholesterol egg

Now-a-days, lots of people are suffering from cholestrophobia. Therefore,

they want to consume less cholesterol diet. So it is the responsibility of producer or designer to produce or design low cholesterol egg. This can be achieved either by reducing the amount of cholesterol per egg, by reducing the size of the yolk or by altering the lipid profile of the yolk. A large egg contains about 200 mg of cholesterol. Low cholesterol eggs can be achieved either by reducing the amount of cholesterol per egg or by reducing the size of the yolk or by altering the lipid profile of the yolk. Parker et al. (1999) reported significantly decrease (by 4 mg/g) in the cholesterol content of the yolk comparatively to the control after supplementation of beta cyclodextrin @ 6% in the feed. Chromium, copper, nicotinic acid, statins, garlic, basil (tulasi), plant sterols, N-3 PUFA supplementation to chicken feed will reduce the yolk cholesterol levels significantly. Dietary linseed oil = 2-4%, fish oil (body oil and not liver oil) = 1-2%, garlic = 0.5%, basil = 0.3%, spirulina = 0.2%, bay leaves = 0.5%, nicotinic acid = 200 mg / kg, neomycin = 10 ppm, statins of yeast = 0.5-1%, guar gum = 1%, grape seed pulp / Ttmato pomace (lycopene) = 2-5%, citrus pulp (nirangenin) = 2-5%, chelated copper = 200 ppm, organic chromium = 2 ppm, roselle seeds = 0.5% and many more herbs in chicken diets will reduce the yolk and body cholesterol levels by 10-25% (Dominic et al., 2014). Panaite et al. (2016) suggested that supplementing the hen diet with flaxseed meal and camelina meal along with copper as CuSO₄ x 5H₂O resulted in low cholesterol and higher linoleic acid containing eggs.

ISSN: 2277-9663

Antioxidant eggs

Vitamin E, a fat-soluble vitamin as well as an effective antioxidant can be enhanced by 100 per cent in designer eggs. Puthpongsiriporn *et al.* (2001) and Panda *et al.* (2011) reported that supplementation of vitamin E in layer diets enhance egg production and increase antioxidant

properties of egg yolks and plasma of White Leghorn hens during heat stress. Seleneim. a mineral responsible for antioxidant property of birds, can be enhanced in egg by supplementing the mineral in diet. Tufarelli et al. (2016) suggested that supplementation of organic selenium (2-hydroxy-4-methyl selenobutanoic acid) improved the selenium and vitamin E status of egg volk. Chantiratikul et al. (2017) reported that hydroponically produced Se-enriched kale sprout was more efficient in selenium depositing in egg as compared to that of sodium selenite and selenium enriched yeast. Through designer egg we can improve several anti-oxidant status of egg such as sulforaphene, lycopene, carnosine. curcumin, quercetin etc. through several herbal supplementation in hens diet. The advantages of enrichment of the egg with anti oxidants include:

- Decreased susceptibility to lipid peroxidation
- > Prevention of fishy odour to the product
- ➤ Vitamin-E reduces the free radicals in blood
- > Decreases risk of cancer and ageing process due to the reduction in the formation of the free radicals
- > Reduction in risk of heart disease

Mineral enriched egg

Eggs can be enriched with many types of minerals by supplementation in hens feed. Most commonly supplemented minerals are selenium and iodine followed by chromium and copper. These trace minerals are very important for human health because the deficiency of these leads to development of deficiency diseases (Al-Massad *et al.*, 2011).

Selenium enriched designer egg

Among 25 countries, where selenium enriched designer eggs are available, Russia stands first. Kralik et al. (2016) reported that supplementing selenium enriched wheat to laying hens, improved the micronutrient

supply to consumers through eggs. Organic selenium supplementation (0.3 mg/kg) lead to more selenium accumulation in eggs as compared to inorganic selenium supplementation (0.3 mg/kg) or nonsupplementation in hens (Rajashree et al., 2014). Selenium is an important constituent of a number of functional seleno-proteins which is mandatory for normal health that may come from different sources like that bread and cereals, fish, poultry and meat. Supplementation of selenium in eggs can decrease the incidence of cancer. Selenium enriched egg consumption may lead to improve anti-oxidant status of the animal and improved reproductive efficiency. Supplementation of Se in eggs can decrease the incidence of cancer (Blot et al., 1993; Clark et al., 1996). While studying the comparative effect of selenium sources (sodium selenite, Se-enriched Cytoplex-selenium and Selenomax), Asadi et al. (2017) reported that selenomonax had highest efficiency in depositing selenium in egg yolk. Addition of Se in the eggs may play certain vital roles such as:

- > Reduction of arthritis, cancer, cataract, cholestatsis, cystic fibrosis, diabetes, immunodeficiency, lymphoblastic anaemia, macular degeneration, muscular dystrophy, etc.
- > Helps in reducing the risk of DNA damage that is associated with cancer.
- > Supplementation can also improve blood fluidity by metabolic modification of lipoproteins which provide may additional protective factor against cardiovascular disease development.

Iodine enriched egg

In countries, where people suffer from iodine deficiency, iodine enriched eggs will be of high value. Sumaiya et al. (2016) reported that supplementation of iodine at 6.5 ppm is economic in producing iodine enriched egg followed by 3.25, 9.75 and iodine 13.0 ppm to laying hens.

www.arkgroup.co.in **Page 629**

Supplementation of iodine in the form of potassium iodide or potassium iodate @ 4000 mg/ton diet increased the iodine concentration of eggs. Saki et al. (2012) and Slupczynska et al. (2014) also reported increased iodine content in egg due to supplementation of iodinated diet. Garber et al. (1993) showed that ingestion of one iodine-enriched egg a day for several weeks is relatively safe and devoid any significant adverse effects in healthy individuals. However, these eggs were not effective when used in low fat and low cholesterol diet by hyper lipidemicpeople. Yokoyama et al. (2016) reported that consumption of iodine enriched egg might lead to reduction in visceral fat in normal individuals.

Other mineral enriched egg

Supplementing the laying hens with zinc methionate @ 150 mg/kg diet led to improve performance of birds production of zinc enriched egg which could supply 19.45 % of daily requirements of zinc for children from 1-8 years (Bahakaim et al., 2014). In another experiment by Saldanha et al. (2009) found that trace mineral levels and sources did not influence any of the studied egg quality parameters. Therefore, they conclude that reducing organic trace mineral supplementation in up to 70% relative to 100% inorganic trace mineral supplementation does not affect egg parameters and therefore, can be applied to the diet of semi-heavy layers in their second cycle of lay. Similar results were observed by Yenice et al. (2015), who observed that organic source of Mn, Zn, Cu and Cr supplementation resulted in higher egg concentration of these minerals. Using Enteromorpha prolifera and Cladophora sp. instead of inorganic trace minerals (Cu, Zn, Co, Mn and Cr) resulted in higher transfer of minerals to egg and enhanced yolk colour, also resulted in improved egg weight and egg shell quality. Therefore, Michalak et al. (2010) concluded that that Enteromorpha prolifera and Cladophora sp. enriched with microelement ions could be potentially used as mineral feed additives in laying hens feeding. Witkowska et al. (2014) also observed similar results while using soybean meal (enriched with Cu, Zn, Fe na Cr) instead of inorganic elements in laying hens. Contradicting to this trend of results, Ma et al. (2014) reported that supplementing chromium, as chromium propionate (@ 0, 200, 400, and 600 µg/kg) did not affect the egg chromium deposition.

CONCLUSION

Poultry eggs are good source of essential nutrients. The development of nutrient enriched value added poultry eggs greatly increased the context of functional foods for human health. Hence, manipulating the diet of hen with the different available feed supplements in requisite amounts, value added and health promoting products can be made available to the health conscious consumers. designing must take into consideration the production facilities, available materials, technical know-how, economic resources of the producers and environmental impacts with welfare issues.

REFERENCES

Abubakar, A.; Tukur, H. M.; Sekoni, A. A. Hassan, and W. A. (2007).Performance and quality egg characteristics of laying birds fed diets containing rice bran with and without yeast supplementation. Asian J. Animal Sci., 1: 1-9.

Al-Massad. M.: Al-Shdefat. R. and Khashroum, A. (2011). The effect of microbial phytase and dietary calcium level on the performance and eggshell quality in laying hens fed marginal phosphorus diets. Asian J. Anim. Sci., **5**: 118-126.

Anonymous (2016-17). Annual Report -2016-17. Department of Animal Husbandry, Dairying and Fisheries,

- Ministry of Agriculture & Farmer's Welfare, Government of India.
- Asadi, F.; Shariatmadari, F.; Karimi-Torshizi, M. A.; Mohiti-Asli, M. and Ghanaatparast-Rashti, M. (2017). Comparison of different selenium sources and vitamin E in laying hen diet and their influences on egg selenium and cholesterol content, quality and oxidative stability. *Iranian J. Appl. Anim. Sci.*, 7(1), 83-89.
- Bahakaim, A. S. A.; Magied, H. A.; Osman, S. M. H.; Omar, A. S.; Abdel Malak, N. Y. and Ramadan, N. A. (2014). Effect of using different levels and sources of zinc in layer's diets on egg zinc enrichment. *Egypt Poult. Sci.*, **34**: 39-56.
- Blot, W. J.; Li, J. Y.; Taylor, P. R.; Guo, W. and Dawsey, S. (1993). Nutrition intervention trials in Linxian, China: Supplementation with specific vitamin/mineral combinations, cancer incidence and disease-specific mortality in the general population. *J. Natl. Cancer Inst.* **185**: 1483-1492.
- Bordia, A.; Bansal, H. C.; Arora, S. K. and Singal, S. V. (1975). Effect of the essential oils of garlic and onion onalimentary hyperlipemia. *Atherosclerosis*, **21**: 15-18.
- Chantiratikul, A.; Chinrasri, O. and Chantiratikul, P. (2017). Effect of selenium from selenium-enriched kale sprout versus other selenium sources on productivity and selenium concentrations in egg and tissue of laying hens. *Biol. Trace Elem. Res.*, pp. 1-6 (Published online DOI 10.1007/s12011-017-1069-0).
- Chowdhury, S. R.; Chowdhury, S. D. and Smith, T. K. (2002). Effects of dietary garlic on cholesterol metabolism in laying hens. *Poult. Sci.*, **81**(12): 1856-1862.

- Clark, L. C.; Combs. G. F. Jr.; Turnbull, B. W.; Slate, E. H. and Chalker, D. K. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized controlled trial. Nutritional Prevention of Cancer Study Group. *J. Am. Med. Assoc.* **276**: 1957-1963.
- Dominic, G.; Murali, P. and Nampoothiri, V. M. (2014). Dietary manipulations for improvement of egg quality for human consumption. *Research News For U (RNFU)*, **14**: 148-157.
- Dyerberg, J. and Bang, H. O. (1979). Lipid metabolism, atherogenesis, and haemostasis in Eskimos: the role of the prostaglandin-3 family. *Pathophysiol. Haemostasis Thrombosis*, **8**(3-5): 227-233.
- Ezhilvalavan, S.; Selvaraj, P.; Mohan, B.; Viswanathan, K.; Mani, K.; Ravi, R.; Sivakumar, K. and Amutha, R. (2003). Designer or diet egg. Enrichment of omega-3 fatty acid in chicken egg. *Poultry Punch*, **19**: 55-79.
- Garber, D. W.; Henkin, Y.; Osterlund, L. C.; Woolley, T. W. and Segrest, J. P. (1993). Thyroid function and other clinical chemistry parameters in subjects eating iodine-enriched eggs. *Food Chemical Toxicol.*, **31**(4): 247-251.
- Hannan, J. M. A.; Rokeya, B.; Faruque, O.; Nahar, N.; Mosihuzzaman, M.; Azad Khan, A. K. and Ali, L. (2003). Effect of soluble dietary fibre fraction of *Trigonella foenum graecum* on glycemic, insulinemic, lipidemic and platelet aggregation status of Type 2 diabetic model rats. *J. Ethnopharmacol.*, **88**(1): 73-77.
- Hargis, P. S.; van Elswyk, M. E. and Hargis, B. M. (1991). Dietary modification of

- yolk lipid with menhaden oil. *Poultry Sci.*, **70**: 874-883.
- Hu. F. B.; Stampfer, M. J.; Manson, J. E.; Rimm, E. B.; Wolk, A.; Colditx, G. A.; Hennekens, C. H. and Willett, W. C. (1999). Dietary intake of alinolenic acid and risk of fatal ischemic heart disease among women. American J. Clin. Nutr., 69(5): 890-897.
- Jiang, Z. and Sim, J. S. 1993. Consumption of n-3 polyunsaturated fatty acid enriched eggs and changes in plasma lipids of human subjects. *Nutrition*. **9**: 513-518.
- Jiang, Z.; Ahn, D. U. and Sim, J. S. (1991). Effects of feeding flax and two types of sunflower seed on fatty acid composition of yolk lipid classes. *Poultry Sci.* **70**: 2467-2475.
- Kim, J. H.; Kim, Y.; Kim, Y. J. and Park, Y. (2016). Conjugated linoleic acid: Potential health benefits as a functional food ingredient. *Annl. Review Food Sci. Technol.*, **7**: 221-244.
- Kralik, Z.; Grcevic, M.; Radisic, Z.; Kralik, I.; Loncaric, Z. and Skrtic, Z. (2016). Effect of selenium-fortified wheat in feed for laying hens on table eggs quality. *Bulgarian J. Agril. Sci.*, **22**(2): 297-302.
- Leskanich, C. O. and Noble, R. C. 1997.

 Manipulation of the N-3
 polyunsaturated fatty acid
 composition of avian eggs and meat.

 World's Poult. Sci. J., 53: 155-183.
- Ma, W.; Gu, Y.; Lu, J.; Yuan, L. and Zhao, R. (2014). Effects of chromium propionate on egg production, egg quality, plasma biochemical parameters, and egg chromium deposition in late-phase laving hens. Biol. Trace Elem. Res., 157(2): 113-119.

- Marshall, A. C.; Kubena, K. S.; Hinton, K. R.; Hargis, P. S. and Van Elswyk, M. E. (1994). N-3 fatty acid enriched table eggs: a survey of consumer acceptability. *Poultry Sci.*, **73**: 1334-1340.
- Maurice, D. V. (1994). Dietary fish oils: Feeding to produce designer eggs. *Feed Manag.*, **45**: 29-32.
- Michalak, I.; Chojnacka, K.; Dobrzanski, Z.; Gorecki, H.; Zielinska, A.; Korczynski, M. and Opalinski, S. (2011). Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. *J. Anim. Physiol. Anim. Nutr.*, **95**(3): 374-387.
- Narahari, D. (2005). Nutrient manipulations for value added eggs and meat production. Paper presented in "Conference of Indian Poultry Science Association and National Symposium 2005", February 2, 2005, Hyderabad, India.
- Narahari, D.; Kirubakaran, A.; Ahmed, M. and Michel, R. 2004. Improved designer egg production using herbal enriched functional feeds. In: *Proceedings of the XXII World Poultry Congress*, 8-13.
- Nash, D. M.; Hamilton, R. M. G. and Hulan, H. W. (1995). The effect of dietary herring meal on the omega-3 fatty acid content of plasma and egg yolk lipids of laying hens. *Canadian J. Animal Sci.*, **75**: 247-253.
- Panaite, T.; Criste, R. D.; Ropota, M.; Cornescu, G. M.; Alexandrescu, D. C.; Criste, V.; Vasile, G.; Olteanu, M. and Untea, A. (2016). Effect of layer diets enriched in omega-3 fatty acids supplemented with Cu on the nutritive value of the eggs. *Romanian Biotechnol. Lett.*, **21**(4): 11754-11762.

www.arkgroup.co.in Page 632

- Panda, N.; Swain, R. K.; Kaur, H. and Panigrahi, B. (2011). Importance of antioxidants, vitamins on immunity and health of animals. In: Veterinary Nutrition and Health. Edited by Tiwari, S. P. and Sanyal, P. K. Satish Serial Pub., New Delhi. pp. 383-392.
- Parker, R. S.; Swanson, J. E.; You, C. S.; Edwards, A. J. and Huang, T. (1999). Bio-availability of carotenoids in human subjects. Proc. Nutr. Soc., **58**(1): 155-162.
- Puthpongsiriporn, U.; Scheideler, S. E.; Sell, J. L. and Beck, M. M. (2001). Effects of vitamin E and C supplementation on performance, in vitro lymphocyte proliferation and antioxidant status of laying hens during heat stress. Poult. Sci., **80**(8): 1190-1200.
- Rajashree, K.; Muthukumar, T. Karthikeyan, N. (2014). Comparative study of the effects of organic selenium on hen performance and productivity broiler of breeders. British Poult. Sci., 55(3): 367-374.
- Saki, A. A.; Farisar, M. A., Aliarabi, H., Zamani, P. and Abbasinezhad, M. (2012).Iodine-enriched egg production in response to dietary iodine in laying hens. J. Agril. Technol., 8(4): 1255-1267.
- Saldanha, E. S. P. B.; Garcia, E. A.; Pizzolante, C. C.; Faittarone, A. B. G.; da Sechinato, A. Molino, A. B. and Lagana, C. (2009). Effect of organic mineral supplementation on the egg quality of semi-heavy layers in their second cycle of lay. Revista Brasileira de Ciência Avícola, 11(4): 241-247.
- Sklan, D.; Berner, Y. N. and Rabinowitch, H. D. (1992). The effect of dietary onion and garlic on hepatic lipid concentrations and activity

- antioxidative enzymes in chicks. J. *Nutritional Biochem.*, **3**(7): 322-325.
- Slupczynska, M.; Jamroz, D.; Orda, J. and Wiliczkiewicz, A. (2014). Effect of various sources and levels of iodine. as well as the kind of diet, on the performance of young laying hens, iodine accumulation in eggs, egg characteristics, and morphotic and biochemical indices in blood. Poult. Sci., 93(10): 2536-2547.
- Sowmya, P. and Rajyalakshmi, P. (1999). Hypocholesterolemic effect germinated fenugreek seeds in human subjects. Plant Foods Hum. Nutr., **53**(4): 359-365.
- Sumaiya, S.; Nayak, S.; Baghel, R. P. S.; Nayak, A.; Malapure, C. D. and Kumar, R. (2016). Effect of dietary iodine on production of iodine enriched eggs. Vet. World, 9(6): 554.
- Tachibana, Y.; Kikuzaki, H.; Lajis, N. H. and Nakatani, N. (2003). Comparison antioxidative properties of carbazole alkaloids from Murrayakoenigii leaves. J. Agril. Food Chem., **51**(22): 6461-6467.
- Tufarelli, V.; Ceci, E. and Laudadio, V. (2016).2-Hydroxy-4methylselenobutanoic acid as new organic selenium dietary supplement selenium-enriched produce eggs. Biol. Trace Elem. Res., 171(2): 453-458.
- Van Elswyk, M. E. 1997. Comparison of n-3 fatty acid sources in laying hen rations for improvement of whole egg nutritional quality: a review. British J. Nutri., 78(Suppl. 1): 61-69.
- Witkowska, Z.; Chojnacka, K.; Korczynski, M.; Swiniarska, M.; Saeid, A.; Opalinski, S. and Dobrzanski, Z. (2014). Soybean meal enriched with microelements by biosorption-A new biological feed supplement for laying

- hens. Part I. Performance and egg traits. *Food Chem.*, **151**: 86-92.
- Wong, E. 2007. The Incredible, Pharmaceutical Egg. ISB News Report, 2007. (http://www.isb.vt.edu/news/2007/news07.Mar.htm)
- Yenice, E.; Mızrak, C.; Gültekin, M.; Atik, Z. and Tunca, M. (2015). Effects of organic and inorganic forms of manganese, zinc, copper, and chromium on bioavailability of these

- minerals and calcium in late-phase laying hens. *Biol. Trace Elem. Res.*, **167**(2): 300-307.
- Yokoyama, J.; Morioka, M.; Inoue, H.; Yonei, Y.; Suzuki, K.; Katoh, K. and Roh, S. G. (2016). Iodine-enriched egg reduced total body fat and visceral fat among normal individuals: A placebo-controlled, randomized, double-blind study. *Glycative Stress Res.: Official J.*, **3**(1): 172-176.

Table 1: Nutrient content of ordinary and designer/functional eggs

Nutrient Content	Quantity Per 100 g of Egg Contents (2 Eggs)*		
Nutrient Content	Ordinary Egg	Designer Egg	
Total saturated fatty acids	3.3g	2.8g	
Total unsaturated fatty acids	6.4g	6.9g	
Mono unsaturated fatty acids (MUFA)	4.4g	4.4g	
Poly unsaturated fatty acids (PUFA)	2.0g	2.5g	
Linoleic acid (ω-6 fatty acids)	1.9g	1.4g	
α-linolenic acid(ω-3 fatty acids)	0.03g	0.7g	
ω-3 fatty acid (EPA+DHA)	0.08g	0.4g	
n6/n3 ratio	17.3	1.27	
Unsaturated/saturated fatty acids	1.94	2.46	
Cholesterol	400mg	320mg	
Carotenoids	1.5mg	2.2mg	
Vitamin E	2mg	15mg	
Selenium	Traces	1.8µg	
Chromium	Traces	1µg	

^{*}Quantities depend upon their levels in the feed provided (Narahari, 2005)

Table 2: DHA enhancement in eggs depending on dietary oil supplementation

Addition of Oils in Diets	Level of DHA	References
	Enhanced 9 mg)	
Flax seed oil	74-83	Jiang et al. (1991), Jiang and Sim (1993)
		and Maurice (1994)
Herring meal (12%) in the	100	Nash et al. (1995)
diet		
Menhaden oil (1.5%)	106	Marshall et al.(1994)
Menhaden oil (3%)	160-178	Hargis et al.(1991) and Van Elswyk (1997)
Tuna orbital oil (0.5%)	180	Leskanich and Nobel (1997)

Page 635 www.arkgroup.co.in

Table 3: Active ingredients present in herbs/herbal enriched functional eggs and their function in relation to human health.

Herbs	Principle Active	Benefits
	Ingredients	
Garlic, onion and their leaves	Allicin, Allylic	Lower LDL cholesterol as well as
	sulfide	anticarcinogenic properties
Sugar beet, grape pulp	Betaine	Decrease plasma homocysyeine, which
		ruptures arterial walls
Spirulina, marigold petals,	Carotenoid pigments	Antioxidant and anticarcinogenic
alfaalfa, red pepper		
Basil leaves	Eugenol, eugenoic	Immunomodulatory properties
	acid	
Turmeric powder	Flavonoid	Antimicrobial as well as antioxidant
	components	
Bay (curry) leaves, Marigold	Lutein	Antioxidant, Improve vision
petals		
Tomato pomace, grape pulp	Lycopene	Decrease LDL cholesterol, antioxidant,
		anticarcinogenic
Citrus pulp	Nirangenin	Diminish LDL cholesterol
Flax seed, canola fish, oil	ω-3 PUFA	Decrease LDL cholesterol, hypertension,
insects, worms		angina and atherosclerosis
Seeds, weeds, legumes	Phytosterols	Enhance HDL cholesterol, decrease
		blood sugar
Quercitin, Luteolin,	Fenugreek, spices	Induce insulin secretion, antimicrobial
Diosgenin, Citogenin		and tonic activity
Brewery waste, yeast,	Statin	Reduces LDL cholesterol
fermented products		
Broccoli, cauliflower,	Sulphoraphane	Anticarcinogenic and antioxidant
cabbage, radish leaves, waste		properties
Milk, eggs and meat products	Taurine	Impede atherosclerotic plaque formation
Brans	Tocotrienols	Decrease LDL cholesterol

[MS received: September 25, 2017] [MS accepted: October 24, 2017]